Fip1 regulates mRNA alternative polyadenylation to promote stem cell self-renewal.

نویسندگان

  • Brad Lackford
  • Chengguo Yao
  • Georgette M Charles
  • Lingjie Weng
  • Xiaofeng Zheng
  • Eun-A Choi
  • Xiaohui Xie
  • Ji Wan
  • Yi Xing
  • Johannes M Freudenberg
  • Pengyi Yang
  • Raja Jothi
  • Guang Hu
  • Yongsheng Shi
چکیده

mRNA alternative polyadenylation (APA) plays a critical role in post-transcriptional gene control and is highly regulated during development and disease. However, the regulatory mechanisms and functional consequences of APA remain poorly understood. Here, we show that an mRNA 3' processing factor, Fip1, is essential for embryonic stem cell (ESC) self-renewal and somatic cell reprogramming. Fip1 promotes stem cell maintenance, in part, by activating the ESC-specific APA profiles to ensure the optimal expression of a specific set of genes, including critical self-renewal factors. Fip1 expression and the Fip1-dependent APA program change during ESC differentiation and are restored to an ESC-like state during somatic reprogramming. Mechanistically, we provide evidence that the specificity of Fip1-mediated APA regulation depends on multiple factors, including Fip1-RNA interactions and the distance between APA sites. Together, our data highlight the role for post-transcriptional control in stem cell self-renewal, provide mechanistic insight on APA regulation in development, and establish an important function for APA in cell fate specification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A snoRNA modulates mRNA 3′ end processing and regulates the expression of a subset of mRNAs

mRNA 3' end processing is an essential step in gene expression. It is well established that canonical eukaryotic pre-mRNA 3' processing is carried out within a macromolecular machinery consisting of dozens of trans-acting proteins. However, it is unknown whether RNAs play any role in this process. Unexpectedly, we found that a subset of small nucleolar RNAs (snoRNAs) are associated with the mam...

متن کامل

The FIP1 gene encodes a component of a yeast pre-mRNA polyadenylation factor that directly interacts with poly(A) polymerase

We have identified an essential gene, called FIP1, encoding a 327 amino acid protein interacting with yeast poly(A) polymerase (PAP1) in the two-hybrid assay. Recombinant FIP1 protein forms a 1:1 complex with PAP1 in vitro. At 37 degrees C, a thermosensitive allele of FIP1 shows a shortening of poly(A) tails and a decrease in the steady-state level of actin transcripts. When assayed for 3'-end ...

متن کامل

Systematic Profiling of Poly(A)+ Transcripts Modulated by Core 3’ End Processing and Splicing Factors Reveals Regulatory Rules of Alternative Cleavage and Polyadenylation

Alternative cleavage and polyadenylation (APA) results in mRNA isoforms containing different 3' untranslated regions (3'UTRs) and/or coding sequences. How core cleavage/polyadenylation (C/P) factors regulate APA is not well understood. Using siRNA knockdown coupled with deep sequencing, we found that several C/P factors can play significant roles in 3'UTR-APA. Whereas Pcf11 and Fip1 enhance usa...

متن کامل

Alternative Splicing in Neurogenesis and Brain Development

Alternative splicing of precursor mRNA is an important mechanism that increases transcriptomic and proteomic diversity and also post-transcriptionally regulates mRNA levels. Alternative splicing occurs at high frequency in brain tissues and contributes to every step of nervous system development, including cell-fate decisions, neuronal migration, axon guidance, and synaptogenesis. Genetic manip...

متن کامل

Sam68 promotes self-renewal and glycolytic metabolism in mouse neural progenitor cells by modulating Aldh1a3 pre-mRNA 3'-end processing

The balance between self-renewal and differentiation of neural progenitor cells (NPCs) dictates neurogenesis and proper brain development. We found that the RNA- binding protein Sam68 (Khdrbs1) is strongly expressed in neurogenic areas of the neocortex and supports the self-renewing potential of mouse NPCs. Knockout of Khdrbs1 constricted the pool of proliferating NPCs by accelerating their cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 33 8  شماره 

صفحات  -

تاریخ انتشار 2014